
Acta Cryst. (1985). A41, 541-544 

The Crystallographic Restriction in Higher Dimensions* 

By HOWARD HILLER# 

Department o f  Mathematics, Columbia University, New  York, N Y  10027, USA 

(Received 13 November 1984; accepted 26 April 1985) 

541 

Abstract 

The crystallographic restriction in dimensions two 
and three is generalized to arbitrary dimensions. It is 
shown that m can occur as the order of an element 
of the point group of an n-dimensional space group 
if and only if ~ ( m )  - n where • is an additive version 
of Euler's totient function. A table of these allowable 
orders in dimensions ---23 is provided. 

Introduction 

A fundamental theorem of mathematical crystallogra- 
phy limits the possible orders of elements in the point 
groups of two- and three-dimensional space groups 
to 2, 3, 4 or 6. Coxeter (1973) attributes the original 
geometric proof to Barlow. A trigonometric proof is 
given, for example, in Rees (1983). None of these 
techniques readily generalizes to higher dimensions 
and a more algebraic approach is required. The recent 
work of Brown, Biilow, Neubiiser, Wondratschek & 
Zassenhaus (1978) emprically extends the possible 
orders of rotations in dimension 4 to include orders 
5, 8, 10 and 12. 

Schwarzenberger (1980) attempted to extend the 
crystallographic restriction to higher dimensions. He 
claimed that the order m of an element of a point 
group of an n-dimensional space group must satisfy 
~p(m) -< n, where ~p(.) denotes Euler's totient function 
(see below). In fact, this is true for irreducible ele- 
ments (i.e. elements that do not leave invariant a 
sublattice of smaller dimension) and goes back to the 
work of Hermann (1949). Schwarzenberger failed to 
treat the reducible case. We show how to handle this 
situation and hence give a complete generalization 
of the crystallographic restriction. 

The required change in the statement is the replace- 
ment of the standard Euler totient function by an 
'additive' version of it. We describe the classical Euler 
function ~ and this modification qb in § 1. We also 
prove there the main result (theorem 1.5). The tech- 
niques involved are taken from elementary linear 

* Editorial note: The principal ideas in this paper have been 
published in a mathematical journal by Pleasants (1985). They are 
here developed independently, in a fashion appropriate to crystal- 
lography. 

t Partially supported by the National Science Foundation under 
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algebra and elementary number theory. In § 2 we give 
a table of these results for dimensions up to 23. 

1. Euler functions 

The classical totient function of Euler is defined by 

(1.0) ~p(m) = the  number of k, 0 <  k <  m, which are 
relatively prime to m. 

One can phrase this definition somewhat more 
abstractly. Let Cm denote the ring of integers modulo 
m. If R* denotes the (multiplicatively) invertible ele- 
ments of a ring R, then ~p(m) denotes the size of C*.  
It is easy to check that ~(.) is determined by the 
following two rules: 

(1.1) (i) if p is a prime, then 

~p(pk) = pk _ p k - 1  = pk(1 _ l /p ) ;  

(ii) if m and m' are relatively prime, then 

q~( mm')  = q~( m )~p( m'). 

Hence if m has a prime decomposition m = p k l . . ,  pks 
(we always assume that Pl <P2 < . . .  <Ps), then 

~p(m)= ~p(pkl) . . . ~p(p k,) 

= pkl(1 -- 1 / p l ) . . .  pks(1 -- UPs) 

= m  H ( 1 - 1 / p ) .  
plm 

We now define a new additive version ~ ( . )  of the 
Euler function. It agrees with the ordinary ~o function 
for prime powers, i.e. satisfies (1.1i) but (1.1ii) is 
replaced by 

(ii') If m and m' are relatively prime then 

@ ( m m ' ) = @ ( m ) + ~ ( m ' )  

unless m = 2  and n is odd, in which case @(2n)= 
~(n). 

We let GL(n,  Z) denote the group of integral n × n 
matrices A whose inverses exist and are also integral. 
This last condition is equivalent to det (A) = +1. We 
recall that the order of a matrix A is the smallest 
integer m so that A m =/, the identity matrix. We now 
consider the following function. 

(1.2) g ( m )  = the smallest n so that GL(n,  Z) contains 
a matrix of order m. 
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Our first observation is that our problem reduces to 
computing g(m). 

(1.3) Proposition. g(m) is the smallest dimension of 
a space group whose point group contains an element 
of order m. 

Proof. Firstly suppose A is a square matrix of size 
n = g(m) and order m given by the definition (1.2). 
Then A defines a faithful integral representation of 
Cm on a free Abelian group Z". We can then let the 
space group G be simply the semidirect product 
7/"° Cm, with point group Cm. This is simply the 
symmorphic space group corresponding to the arith- 
metic crystal class ( C m ,  z / n ) .  

Conversely, if G is a space group whose point 
group H contains an element x of order m then the 
faithful representation f :  H--> Aut (T) of H on the 
lattice T produces a matrix A = f ( x )  that satisfies the 
requirements of (1.2). 

We recall that a complex number ~ is an ruth root 
of unity if ~m = 1 [for example, ~ = exp (27ri/m)]. If 
m is the smallest such number, then m is called the 
period of ~ and ¢ is called a primitive ruth root of 
unity. There are ~(rn) primitive ruth roots of unity. 
We turn now to the calculation of g(m). We have the 
following easy but important lemma: 

(1.4) Lemma. If a primitive ruth root of unity ~ is 
an eigenvalue of an integral n × n matrix A, then all 
the primitive ruth roots of unity are eigenvalues of 
A. In particular, n -> ~o (m). 

Proof. The characteristic polynomial of A =  
det ( x I -  A) is integral and hence is invariant under 
permutation of the primitive roots of unity. As ¢ is a 
root, the result follows. 

The main result is: 

(1.5) Theorem. g ( m ) =  q~(m). 
Proof. It suffices to show that g(m) satisfies the 

properties (1.1i) and (ii') above. Clearly if m is odd 
g(2m) = g(m), by considering the matrix - A .  

Next we observe that g(m) -< ~(m) by considering 
the ring of integers in a cyclotomic field, i.e. the 
rational numbers extended by the ruth roots of unity. 
This is a lattice that admits the primitive ruth roots 
of unity as an integral basis and the matrix represent- 
ing multiplication by exp(27ri/m) proves the 
observation. 

Suppose that A in GL(n, Z) has order m, where 
n=g(m). Since every matrix of finite order is 
diagonalizable over the complex numbers, A is conju- 
gate in GL(n, C) to 

Now if m is a prime power pk one can demonstrate 
the statement of the theorem by observing that one 
eigenvalue ¢~ of the matrix must be a primitive pkth 
root of unity and then invoking (1.4). 

Hence we are reduced to considering the case where 
m = p k , . . . p k  s where we can assume that if p~=2,  
then kl > 1. We must show 

n >  
i = 1  

Suppose ~ is a primitive mlth root of unity and 
m~ is divisible by some pk,, 1 --< i <-- S. (Otherwise move 
on to ~2.) Suppose 

Now remove all the primitive mlth roots of unity 
from the multiset of eigenvalues ¢1 , . . . ,  ¢, and repeat 
this procedure for the ¢i remaining with lowest index. 
One generates a sequence m~,.. . ,  m, with, say, 

m, 

and no Pi, i e / j ,  dividing into n. Since A has order m, 

I l u . . . w I , = { 1 , 2 , . . . , s } .  (*) 

Hence: 

g ( m ) =  n -  ¢ ( m l ) + . . . +  ~(m,) by (1.4) 

_____~( i~pk , )+ . . .+~( iH1pk, )  by(1.1ii) 

= H g0(Pk')+--. + I-I ~(pk,) by(1.1ii) 
iE I t iE I t 

-> E E 
i ~ l  t i ~ l  t 

_ ~ ~p(pk,) by (*). 
i = l  

The penultimate inequality follows from the fact that 
H a~ -> Y, a~, if all a~ > 1. This hypothesis is guaranteed 
by our assumption on n. This completes the proof. 

Remarks. The following two comments were sug- 
gested by the referee. 

1. An alternative proof of (1.6) can be constructed 
using well known properties of the cyclotomic poly- 
nomials fd (T). We recall that these polynomials can 
be defined in the following way (see Lang, 1971). Let 

fd (T)  = I-I ( T -  ~') 
p e r i o d ( ~ ' )  = d 

so that 

T i n - l =  lI  fd(T). 
d i m  

Certainly f~ (T) = T -  1 and the f,, (T) can then be 



HOWARD HILLER 543 

defined recursively by 

f . , ( T ) = ( T ' - I ) / 1 - [  fa(T). 
din 

d<n 

For example, if p is a prime then f p ( T ) =  
1 + T +  T 2 + . . . +  T p-~. For prime powers pk, fpk(T) 
fp (TPk-I), Each cyclotomic polynomial fa (T) has 
degree q (d )  and is irreducible over the rational 
numbers. 

Suppose A in GL(n, Z) has order m. Then since 
the minimal polynomial MA (T) of A divides into the 
characteristic polynomial of A (Cayley-Hamilton 
theorem) of degree n: deg (MA) <- n. Since A m = I, 
MA divides into T m - 1 = I-Ialmfa ( T). Since the cyclo- 
tomic polynomials are irreducible: 

MA(T)=faI(T) ...fa,(T) 

for some divisors d ~ , . . . ,  d, of m. We claim now that 
m is the least common multiple of d~,.. . ,  dr. If  d 
divides into N, 1-< i - r ,  then MA(T) divides into 
I-IalNfa(T)=XN--1. But then AN=I,  so m divides 
into N, since m is the order of A. In particular m 
divides into the product d~ . . .  dr and we get: 

n>-deg(Ma) = ~ ~o(d,)=~(dl...dr)>- ~(m). 
i=1 

This completes the argument. 
2. One can define a function g( . )  by replacing 

GL(n, 7/) by SL(n, 7/) in the definition of g( . ) .  If  one 
defines a function t~ by deleting the clause ' un less . . . '  
in the definition (ii') of ~ (m) ,  then one also has 
g(m)=~(m) .  

Table 1. Computation of ord ( n ) 
(p, k) entry = pk _pk-l .  

3 
5 
7 

11 
13 
17 
19 
23 

101 

1 2 3 4 

2 
4 
6 

10 
12 
16 
18 
22 

6 18 
20 100 
42 

160 

Table 2. Generation of values of ord (n) from Table 1 

ord (n) = {m:~(m) = n}. 

n ord (n) 
0 1 
1 2 
2 3,4, 6 
4 5, 8,10,12 
6 7, 9,14,15,18, 20, 24, 30 
8 16, 21, 28, 36, 40, 42, 60 

10 11, 22, 35, 45, 48, 56, 70, 72, 84, 90, 120 
12 13, 26, 33, 44, 63, 66, 80, 105, 126, 140, 168, 180, 210 
14 39, 52, 55, 78, 88, 110, 112, 132, 144, 240, 252, 280, 360, 420 
16 17, 32, 34, 65, 77, 99, 104, 130, 154, 156, 198, 220, 264, 315, 336, 

504, 630, 840 
18 19, 27, 38, 51, 54, 68, 91, 96, 102, 117, 176, 182, 195, 231,234, 260, 

312, 390, 396, 440, 462, 560, 660, 720, 1260 
20 25, 50, 57, 76, 85, 108, 114, 136, 160, 170, 204, 273, 364, 385, 468, 

495, 520, 528, 546, 616, 770, 780, 792, 924, 990,1008,1320,1680, 2520 
22 23, 46, 75, 95, 100, 119, 135, 143, 150, 152, 153, 190, 216, 224, 228, 

238, 270, 286, 288, 306, 340, 408, 455, 480, 585, 624, 693, 728, 880, 
910, 936, 1092, 1155, 1170, 1386, 1540, 1560, 1848, 1980, 2310 

2. Computations 

Fix a dimension n and let Ord (n) denote the set of 
natural numbers that occur as orders of elements in 
the point groups of n-dimensional space groups. For 
example, we have Ord (2) = Ord (3) = {1, 2, 3, 4, 6}. 
According to (1.5) 

(2.0) Ord ( n ) = { m :  ~(m)--- n}, 

where ~ ( . )  denotes the additive Euler function of 
§ 1. In particular, Ord (n) _ Ord (n + 1) and we also 
have the following generalization of O r d ( 2 ) =  
Ord (3): 

(2.1) Proposition. Ord (2n) = Ord (2n + 1), for all 
n - 1 .  

Proof. It is an easy consequence of the definition 
of @(.) that ~ (k )  is even, k > 2 .  Hence the result 
follows from (2.0). 

Hence to enumerate the elements of Ord (n), it 
suffices to understand ord (n) = Ord (n) - Ord (n - 
1) = {m: ~ ( m )  = n}, for even n - 2. Note that by (2.1) 

ord (n) is empty for odd n greater than one. In addi- 
tion ord (1) = (2} and for convenience we set ord (0) = 
{1}. The following result facilitates the computation 
of ord (n). 

(2.2) Proposition. For all n > 1 

ord + (2n) = 2 ord- (2n) w I,_J 2 k+l ord- (2n --2k), 
k 

where k satisfies k>-I  and 2k<--2n. 
Proof. If  m is in ord + (2n) but not in 2 ord- (2n), 

then m contains a ( k + l ) t h  power of 2, k>- l ,  and 
• (m)=2n .  Hence m=2k+ls ,  where s is odd, so 
clearly ~ ( s )  = ~ ( m ) -  ~(2  k+l) = 2 n - 2  k and the 
result follows. 

This result reduces the computation of ord (n) to 
its odd elements. Suppose we want to find the set 
ord (100). In order to exploit (2.2) we make a table 
with rows labelled by the prime numbers p > 2 ,  
columns labelled by the natural numbers k-> 1 and 
whose (p,k) entry is p k p k - 1 .  TO calculate 
ord- (100), we need only that part of the table con- 
taining values -< 100. This turns out to be quite small; 
see Table 1. 
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Starting with ord (2) = {3, 4, 6} and observing from 
Table 1 that ord- (4)= {5}, we get 

ord ÷ (4) = 2 ord- (4) w 4 ord- (2) w 8 ord- (0) 

={8, 10, 12}. 

Hence 

ord (4) = ord ÷ (4) word-  (4) 

= {5, 8, 10, 12}. 

This result is consistent with the enumeration of 
the four-dimensional space groups given by Brown 
et al. (1978). 

Continuing in this fashion one can generate the 
values for dimensions n-< 100 using Table 1 alone. 
We have done this for n-< 23 in Table 2. 

It is interesting to observe that the first example 

where the maximum of the allowable new orders does 
not increase occurs in going from dimensions 20 to 22. 

It is a pleasure to thank the referee for numerous 
helpful suggestions and R. L. E. Schwarzenberger for 
his encouragement to write up these results. 
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Abstract 

The effects on the reciprocal space of one or more 
pseudotranslations occurring in a crystal structure are 
studied. A quantitative theory is described, which 
gives full account of the subsets of pseudonormalized 
structure factors whose mean intensity significantly 
deviates from unity. Conversely, statistical criteria are 
suggested aiming at facilitating the recognition of the 
nature of the superstructure. The theory has been 
implemented into a computer program that, from 72 
different pseudotranslational symmetries, chooses the 
most probable one, estimates the number of atoms 
suffering pseudosymmetry and renormalizes structure 
factors. 

Symbols and abbreviations 

h = (h, k,/):  vectorial index of a reflection. 
f :  atomic scattering factor. The thermal factor is 
included; anomalous dispersion is not. 
Fh, Eh: structure factor and normalized structure fac- 
tor respectively with vectorial index h. 

* Present address: 'Rudjer Bogkovir' Institute, Bijeni~ka 54, 
41000 Zagreb, Yugoslavia. 
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Cs = (R,  T~): sth symmetry operator. R~ is the rota- 
tional part, Ts the translational part. 
m" order of the space group (it coincides with the 
number of symmetry operators). 
ui: ith pseudotranslation in the unit cell. 
p: number of atoms (symmetry-equivalent included) 
whose positions are related by the pseudotransla- 
tions u. 
hi" order of the pseudotranslation ui (see § 2a). 
Fp, Ep: structure factor and normalized structure fac- 
tor relative to the p atoms. 
q: number of atoms (symmetry-equivalent included) 
whose positions are not related by any pseudo- 
translation. 
tp: number of independent atoms that generate the p 
atoms when the pseudotranslations ui and the sym- 
metry operators Cs, s = 1 , . . . ,  m, are applied. 
tq: number of independent atoms that generate the q 
atoms by application of the symmetry operators C~, 
s = l , . . . , m .  
p(r): electron density function in the unit cell. 
pp(r): electron density function corresponding to the 
p atoms. 
~tp, ~tq, ~"~p, ~q, ~ " . N - ~ , f ~  (thermal factor included) 
where the summation is extended to the tp, tq, p, q, 
N atoms respectively. 
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